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Abstract

The freedom of choice in designating a base{body for free{ying manipulators gives these

manipulators a base{invariance symmetry that is not encountered in terrestrial manipulators. This

paper analyzes the relationship between this natural symmetry and the dynamical equations for free-

ying manipulators. The base-invariance symmetry is used to develop a new formulation of the

manipulator dynamics in which two independent O(N ) recursions proceeding in opposite directions

are summed together to obtain the complete free{ying manipulator dynamics. Computation of the

operational space inertia for the links in the manipulator is also discussed.

1 Introduction

The dynamics and control of free-ying manipulators has received considerable attention during

recent years [1{5]. In addition to the internal hinge degrees of freedom, free{ying manipulators

have 6 additional degrees of freedom associated with the overall location and orientation of the

manipulator. These additional 6 degrees of freedom are typically assigned to the manipulator

base{body. While the base{body link is typically chosen based on design and use considerations,

from a more general perspective, any one of the manipulator links can be designated as the base{

body with equal validity. This freedom of choice, not available for terrestrial manipulators, is

responsible for a base{invariance symmetry possessed by free-ying manipulators. In this paper,

we use this symmetry to study free-ying manipulator dynamics.

The point of departure is the well known class of O(N ) articulated body inertia forward

dynamics algorithms for general manipulators [6{8]. These algorithms are highly sequential and

consist of the spatially recursive computation of the generalized accelerations for the manipula-

tor. We use the base{invariance symmetry of free-ying manipulators to transform this forward

dynamics algorithm into one with a highly decoupled structure. The new algorithm consists of a
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pair of independent articulated body inertia recursions which proceed in opposite directions. The

structure of the algorithm o�ers obvious advantages for parallelization. It is also shown that the op-

erational space inertia inertia for free-ying manipulators can be obtained by simply combining the

quantities computed by the pair of articulated body inertia recursions. Our analysis is general and

applicable even when the base body forces are non{zero, that is, even when the linear and angular

momenta are not constant. The subject of inverse dynamics algorithms for free-ying manipulators

has previously been dealt with in reference [9] as a special case of the class of under{actuated

manipulators.

2 Modeling and Dynamics of Manipulators

Consider a general serial manipulator with n rigid body links. As shown in Figure 1, the links

are numbered in increasing order from tip to base. The outer most link is link 1, and for now we
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Figure 1: Illustration of the links and hinges in a manipulator

designate link n as the manipulator base{body. The inertial frame is referred to as \link (n+ 1)".

The kth hinge connects the (k+1)th and kth links. Associated with the kth hinge are two co-located

frames, O+
k
and Ok which are attached to the the (k + 1)th and kth links respectively. The motion

of the kth hinge is de�ned by the motion of frame Ok with respect to frame O+
k
. Resulting from

the de�nition of these hinge frames, the kth link has the two frames Ok and O+
k�1 attached to it.

We choose frame Ok which is on the inboard side, to be the reference body frame for the kth link.

The nth hinge connects the base{body to the inertial frame. For a terrestrial manipulator,
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this hinge has less than 6 degrees of freedom, while for a free{ying manipulator this hinge has

full 6 orientation and positional degrees of freedom. In general the kth hinge has r(k) degrees of

freedom, where 1 � r(k) � 6, and we denote its vector of generalized coordinates by �(k). For

simplicity, and without any loss in generality, we assume that the number of generalized velocities

for the hinge is also r(k), i.e., there are no local nonholonomic constraints on the motion of the

hinge. The vector of generalized velocities for the kth hinge is �(k) 2 Rr(k) . The choice of the hinge

angle rates, _�(k), for the generalized velocities, �(k), is often an obvious and convenient choice.

However, when the number of hinge degrees of freedom is larger than 1, alternative choices are

often preferred since they simplify and decouple the kinematic and dynamic parts of the equations

of motion. This is true in particular for 6 degree of freedom hinges. Three of the 6 degrees of

freedom are orientation degrees of freedom, and it is well known that at least four generalized

coordinates (such as for a quaternion representations) are needed to provide a global, singularity

free representation. Thus �(n) is seven dimensional for free-ying manipulators. Moreover, for

this type of hinge, the use of \derivatives of quasi-coordinates" such as the angular velocity of the

base-body for the orientation generalized velocities is preferred since it simpli�es the equations of

motion. The use of non-integrable velocity coordinates such as the angular velocity implies that

these velocity coordinates must be transformed into integrable variables prior to any numerical

integration. We omit the details here since these issues are well known and discussed in standard

texts. The overall number of degrees of freedom for the manipulator is given by N =
Pn

k=1 r(k).

The spatial velocity V (k), of the kth body frame Ok, is de�ned as V (k) = col[!(k); v(k)] 2

R
6 , with !(k) and v(k) denoting the angular and linear velocities of frame Ok. We use coordinate-

free notation for the various velocity, force etc. quantities de�ned in this paper. The relative spatial

velocity across the kth hinge is given byH�(k)�(k) whereH�(k) 2 R6�r(k) is the hinge map matrix

for the hinge. The spatial force of interaction at the kth hinge is denoted f(k) = col[N(k); F (k)] 2

R
6 , with N(k) and F (k) denoting the moment and force components respectively. The spatial

inertia M(k) of the kth link about frame Ok is de�ned as

M(k) =

 
J (k) m(k)~p(k)

�m(k)~p(k) m(k)I3

!
2 R6�6

where m(k) is the link's mass, p(k) 2 R
3 is the vector from Ok to the link's center of mass, and

J (k) 2 R
3�3 is the rotational inertia of the link about Ok. Here ~x 2 R

3�3 denotes the skew{

symmetric cross{product matrix associated with the vector x.

With V (k) denoting the spatial velocity, �(k) the spatial acceleration, f(k) the spatial force

and T (k) the hinge generalized force at Ok for the kth link, the following Newton{Euler recursive

equations [7, 10] describe the equations of motion as well as an O(N ) inverse dynamics algorithm

for the serial manipulator:
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Algorithm 2.1 Newton-Euler Inverse Dynamics Algorithm

8>>>>><
>>>>>:

V (n+ 1) = 0; �(n+ 1) = 0

for k = n � � � 1

V (k) = ��(k + 1; k)V (k + 1) +H�(k)�(k)

�(k) = ��(k + 1; k)�(k + 1) +H�(k) _�(k) + a(k)

end loop

(1)8>>>>><
>>>>>:

f(0) = 0

for k = 1 � � �n

f(k) = �(k; k � 1)f(k � 1) +M(k)�(k) + b(k)

T (k) = H(k)f(k)

end loop

where b(k) denotes the velocity dependent gyroscopic force term

b(k)
4
=

 
~!(k) ~v(k)

0 ~!(k)

!
M(k)V (k) (2)

and a(k) denotes the velocity dependent Coriolis acceleration term whose value depends upon the

type of the hinge. Expressions for a(k) for the case of 1 degree of freedom rotational and prismatic

hinges respectively are as follows: 
~�!(k)!(k)
~�!(k)v(k)

!
; and

 
0

!(k) ~�v(k)

!

where �!(k) and �v(k) denote the relative angular and linear velocity across the hinge. �(k; k�1)

denotes the spatial transformation operator from Ok�1 to Ok and is given by

�(k; k � 1)
4
=

 
I3 ~l(k; k � 1)

0 I3

!
2 R6�6

where l(k; k�1) is the vector from frame Ok to frame Ok�1. Though not shown explicitly, external

forces on any link in the manipulator are handled by adding their e�ect to the b(�) vector for the

link.

Spatial operators [7] lead to compact expressions for the equations of motion and other key

dynamical quantities. The vector �
4
= [��(1); � � � ��(n)]� 2 R

N denotes the vector of generalized

coordinates for the manipulator. Similarly, we de�ne the vectors of generalized velocities � 2 R
N

and generalized (hinge) forces T 2 R
N for the manipulator. The vector of spatial velocities V is

de�ned as V
4
= [V �(1) � � � V �(n)]� 2 R

6n . The vector of spatial accelerations is denoted � 2 R
6n ,

that of the Coriolis accelerations by a 2 R
6n , the link gyroscopic forces by b 2 R

6n , and the link
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interaction spatial forces by f 2 R
6n . The equations of motion for the serial manipulator can be

written in operator form as follows [7]:

V = ��H�� (3a)

� = ��[H� _� + a] (3b)

f = �[M�+ b] (3c)

T = Hf =M _� + C (3d)

where

M
4
= H�M��H� 2 RN�N (4a)

C
4
= H�[M��a+ b] 2 RN (4b)

and H
4
= diag

n
H(k)

o
2 RN�6n ; M

4
= diag

n
M(k)

o
2 R6n�6n,

E�
4
=

0
BBBBBB@

0 0 0 0 0

�(2; 1) 0 : : : 0 0

0 �(3; 2) : : : 0 0
...

...
. . .

...
...

0 0 : : : �(n; n� 1) 0

1
CCCCCCA
2 R6n�6n

�
4
= (I6n � E�)

�1 =

0
BBBB@

I6 0 : : : 0

�(2; 1) I6 : : : 0
...

...
. . .

...

�(n; 1) �(n; 2) : : : I6

1
CCCCA 2 R6n�6n (5)

with

�(i; j)
4
= �(i; i� 1) � � � �(j + 1; j) 2 R6�6 for i > j

M(�) is the mass matrix of the manipulator and the vector C(�;�) contains the velocity dependent

Coriolis and gyroscopic hinge forces. (4a) is referred to as the Newton{Euler Operator Factorization

of the mass matrixM [7].

2.1 Spatial Operator Factorization ofM�1

As discussed in reference [7], operator factorization and inversion techniques can be used to obtain

a closed form spatial operator expression for M�1. First, we de�ne the articulated body inertia

quantities P (:);D(:);G(:);K(:); � (:);P+(:) and  (:; :) for the manipulator links using the following

tip{to{base recursive algorithm [6, 7]:
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Algorithm 2.2 Computation of Articulated Body Inertias8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

P+(0) = 0

for k = 1 � � �n

P (k) = �(k; k � 1)P+(k � 1)��(k; k � 1) +M(k)

D(k) = H(k)P (k)H�(k)

G(k) = P (k)H�(k)D�1(k)

K(k + 1; k) = �(k + 1; k)G(k)

� (k) = I6 �G(k)H(k)

P+(k) = � (k)P (k)� �(k) = � (k)P (k)

 (k + 1; k) = �(k + 1; k)� (k)

end loop

(6)

The operator P 2 R6n�6n is de�ned as a block diagonal matrix with the kth diagonal element

being P (k) 2 R6�6 . The quantities in (6) are used to de�ne the following spatial operators:

D
4
= HPH� 2 RN�N

G
4
= PH�D�1 2 R6n�N

K
4
= E�G 2 R6n�N

�
4
= I �GH 2 R6n�6n

P+ 4
= �P� � = �P 2 R6n�6n

E 
4
= E�� 2 R

6n�6n (7)

The operators D;G and � are all block diagonal. Even though K and E are not block diago-

nal matrices, their only nonzero block elements are the elements K(k; k � 1)'s and  (k; k � 1)'s

respectively along the �rst subdiagonal. It is easy to verify from (6) that P satis�es the Riccati

equation

M = P � E PE
�
 = P � E�PE

�
 (8)

Now de�ne the lower{triangular operator  2 R6n�6n as

 
4
= (I � E )

�1 (9)

Its block elements  (i; j) 2 R6�6 are as follows:

 (i; j)
4
=

8><
>:
 (i; i � 1) � � �  (j + 1; j) for i > j

I6 for i = j

0 for i < j

The structure of the operators  and E is identical to that of the operators � and E� except that

the elements are now  (i; j) rather than �(i; j).

Lemma 2.1 below describes an alternative (to (4a)) operator factorization of M as well as

an expression for its inverse [7, 8].
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Lemma 2.1 The Innovations Operator Factorization of the mass matrixM and the operator

expression for its inverse are as follows:

M = [I +H�K]D[I +H�K]� (10a)

[I +H�K]�1 = [I �H K] (10b)

M�1 = [I �H K]�D�1[I �H K] (10c)

The factor [I +H�K] 2 R
N�N is square while the factor D is block diagonal. Thus, the factor-

ization in Lemma 2.1 can also be regarded as a closed{form LDL� factorization ofM. The closed

form operator expression for the inverse of the factor [I +H�K] is given by (10b). It leads to the

closed form operator expression for the inverse of the mass matrixM in (10c). This factorization

can be regarded as a closed{form L�DL factorization ofM�1.

2.2 Articulated Body Forward Dynamics Algorithm

Using (10c) in (3d) and operator identities described in reference [8], we obtain the following

operator expression for the generalized accelerations vector _�:

_� = [I �H K]�D�1[T �H (KT + P a+ b)]�K� �H�a (11)

This expression forms the basis for the O(N )articulated body inertia forward dynamics algorithm

[6,7] for manipulators. The structure of the algorithm is more easily seen by �rst decomposing (11)

into the following sequence of expressions:

z = E�z
+ + P a+ b (12a)

z+ = z +G� (12b)

� = T �Hz (12c)

� = D�1� (12d)

�+ = E��� (12e)

_� = � �G��+ (12f)

� = �+ +H� _� + a (12g)

The expressions in (12) map into the following computational algorithm:
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Algorithm 2.3 Articulated Body Inertia Forward Dynamics Algorithm8>>>>>>>>>><
>>>>>>>>>>:

z(0) = 0

for k = 1 � � �n

z(k) = �(k; k � 1)z+(k � 1) + b(k) + P (k)a(k)

�(k) = T (k)�H(k)z(k)

z+(k) = z(k) +G(k)�(k)

�(k) = D�1�(k)

end loop

(13a)

8>>>>>>><
>>>>>>>:

�+(n+ 1) = 0

for k = n � � � 1

�+(k) = ��(k + 1; k)�(k + 1)
_�(k) = �(k)�G�(k)�+(k)

�(k) = �+(k) +H�(k) _�(k) + a(k)

end loop

(13b)

The overall steps in this O(N )articulated body inertia forward dynamics algorithm are as follows:

1. Use the �rst base{to{tip recursion in Algorithm 2.1 to compute the spatial velocities V (k),

and the nonlinear velocity dependent terms a(k) and b(k) for each of the links.

2. Use the tip{to{base recursion in Algorithm 2.2 to compute the articulated body inertia quan-

tities P (k) etc.

3. Use the �rst tip{to{base recursion in Algorithm 2.3 to compute the residual force quantities

z(k) etc.

4. Use the subsequent base{to{tip recursion in Algorithm 2.3 to compute the link and joint

accelerations �(k) and _�(k) for all the links and hinges.

3 Free{Flying Manipulators

We now specialize the manipulator model described above to the case of a serial free-ying ma-

nipulators shown in Figure 2. For free-ying manipulators, the nth hinge (between the base{body

and the inertial frame) has 6 degrees of freedom, and the components of the generalized velocities

vector, �(n), for this hinge are chosen as the components of the 6{dimensional spatial velocity of

the base{body, V (n), represented in the body frame O(n). The hinge map matrix H(n) for this

hinge is the 6� 6 identity matrix, i.e. H(n) = I6.

The operator factorization and inversion result as well as the O(N ) articulated body in-

ertia forward dynamics algorithm described earlier for general manipulators extend to free-ying
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Figure 2: A serial free-ying manipulator with a 6 degree of free-

dom hinge at the base{body

manipulators as well. Since H(n) = I6, the n
th recursion step (for the base{body) in Algorithm

2.2 simpli�es to

D(n) = P (n); G(n) = I6; � (n) = I6; � (n) = 0 (14)

Also, the residual force computations in Algorithm 2.3 simpli�es to

�(n) = T (n)� z(n); _�(n) = �(n) = P�1(n)�(n); �(n) = �(n) + a(n) (15)

For a terrestrial manipulator, the choice of a link as the base{body is uniquely the link attached to

the ground. For free-ying manipulators, since none of the links are attached to the ground, the

choice of a link as the base-body is in principle an arbitrary choice. In practice, this choice is made

based upon operational convenience.

It is our contention here that the freedom of choice in designating the base-body link is

an inherent base-invariance symmetry of free-ying manipulators which has interesting analytical

and algorithmic consequences explored in the remainder of this paper. In Section 2, link n was

designated as the base{body link for the manipulator, and this choice dictated the speci�c de�-

nition of the generalized coordinates, the expressions for the equations of motion, the de�nitions

of the spatial operators and also the structure of the inverse and forward dynamics computational

algorithms. Appendix A establishes rigorously that all of the modeling and operator factorization

results in Section 2 carry over completely even when links other than link n are designated as the

base{body. In particular, Appendix A describes the structure of the various dynamics quantities

and operators associated with di�erent choices of the base-body. It also describes the transforma-
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tions required to convert operators associated with one base-body choice to those corresponding to

a di�erent choice.

The models and algorithms associated with the choice of extremal links as base-bodies are

fundamental models, in the sense that algorithms associated with the choice of interior links as

base-bodies can be recovered from and rely upon computations for the fundamental models. We

have already seen one fundamental model in Section 2 where the extremal link n was designated

the base-body and we refer to this model as the regular model. In the following section we look

at the other fundamental model for a serial free-ying manipulator where link 1 is designated the

base-body for the manipulator. We refer to this new model as being the dual of the regular model.

We henceforth use the subscript \p" for the articulated body inertia and residual force

quantities de�ned in Section 2 for the regular model. For quantities associated with the dual model

(with link 1 as base{body) we use the subscript \s". Thus the vectors �p and �s denote the

generalized velocity vectors for the regular and dual manipulator models respectively.

3.1 Dynamics Algorithm with Link 1 as Base Body

Figure 3 shows the con�guration of a serial free-ying manipulator with link 1 chosen as the

base{body. As discussed in Appendix A, the six components of the base{body's spatial velocity

Base
body

6 dof hinge

Inertial reference
n

1

k

Figure 3: A serial free-ying manipulator with the outer most link

as base{body

vector form part of the generalized velocity coordinates for the manipulator. Thus, when the

base{body is moved from link n to link 1, the components of �(n) in �p are replaced by the

components �(0)
4
= V (1) to obtain the new generalized velocity coordinates vector �s. Note that

the de�nition of the Hs, �s etc. operators and the mass matrix Ms all change in the dual
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formulation, Nevertheless, as discussed in Appendix A, the operator formulation and operator

factorization and inversion results for the new mass matrix still carry through. Consequently, there

is a corresponding version of the articulated body inertia forward dynamics algorithm (Algorithm

2.3) for this model as well.

One important di�erence between the dual articulated body inertia algorithm and Algo-

rithm 2.3 is that the roles of the base and tip links are reversed. Thus tip{to{base (base{to{tip)

recursions now proceed from link n to 1 (link 1 to n) rather than in the opposite direction. We

designate the new dual articulated body inertia by the symbol S+(k), and the other dual quantities

by the subscript s, i.e. Ds, Gs, � s etc. The quantity corresponding to P+ in the dual formulation

is designated S and is given by by the expression

S
4
= � sS

+

Note that the reversal in direction also reverses the sense of orientation of the internal hinge axes,

and therefore all of the hinge map matrices, H(:), reverse sign. The recursions corresponding to

(6) for the dual articulated body inertias are as follows:

Algorithm 3.1 Computation of Dual Articulated Body Inertias

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

S(n) = 0

for k = n� 1 � � � 0

S+(k) = �(k; k + 1)[S(k + 1) +M(k + 1)]��(k; k + 1)

Ds(k) = H(k)S+(k)H�(k)

Gs(k) = �S+(k)H�(k)D�1
s (k)

Ks(k � 1; k) = �(k � 1; k)Gs(k)

� s(k) = I6 +Gs(k)H(k)

S(k) = � s(k)S
+(k)

 s(k � 1; k) = �(k � 1; k)� s(k)

end loop

(16)

The quantity �(k � 1; k) is de�ned as the inverse of �(k; k � 1), that is

�(k � 1; k)
4
= ��1(k; k � 1) =

 
I3 �~l(k; k � 1)

0 I3

!
(17)

Similarly, an algorithm corresponding to the residual{forces recursion in (13) can be developed for

the dual model and forms the remaining part of the dual articulated body inertia forward dynamics

algorithm and is as follows:
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Algorithm 3.2 Computation of Dual Residual Forces

8>>>>>>>>>><
>>>>>>>>>>:

zs(n) = 0

for k = n� 1 � � � 0

z+s (k) = �(k; k + 1) [zs(k + 1) + b(k + 1) + fS(k + 1) +M(k + 1)gas(k + 1)]

�s(k) = T (k) +H(k)zs(k)

zs(k) = z+s (k) +Gs(k)�s(k)

�s(k) = D�1�s(k)

end loop

(18a)

8>>>>>>><
>>>>>>>:

�(0) = 0

for k = 0 � � �n� 1

�(k) = ��(k � 1; k)�+(k � 1)
_�(k) = �s(k)�G

�
s(k)�(k)

�+(k) = �(k) �H�(k) _�(k) + as(k)

end loop

(18b)

The dual Coriolis acceleration as(k) is de�ned as

as(k)
4
= � ��(k + 1; k)ap(k + 1) (19)

3.2 Direct Computation of Link Spatial Acceleration

An important relationship which relates the inter{link forces, f(k), the residual forces zp(k), and

the link spatial accelerations �(k) is described by the following lemma.

Lemma 3.1 We have

f = P+�+ + z+p = P (�� ap) + zp (20)

Proof: From (12) it follows that

�
12f;12g
= �+ +H�

p�p � �
�
p�

+ + ap
12e
= E� 

p

�p +H
�
p�p + ap

9
=  �p(H

�
p�p + ap) (21)

Thus

� �p�
+
p

12e
= E� 

p
�p

21
= ~ 

�

p(H
��p + ap) (22)

where ~ 
4
= E  =  � I. Also,

z+p
12a;12b
= E�

p
z+p +Gp�p + P ap + bp

5
= �p(Gp�p + P ap + bp) (23)
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Therefore,

f
3c
= �p(Mp�+ b)

21
= �pM �p(H

�
p�p + ap) + �pb

8
=

h
�pP + P ~ 

�

p

i
(H�

p�p + ap) + �pb

22
= P+�+ + �pP (H�

p�p + ap) + �pb

7;12d;23
= P+�+ + z+

The latter half of (20) can be proved similarly.

The dual version of (20) is given by:

�f = S+(�+ � as) + z+s = S�+ zs (24)

The relationships in (20) and (24) give alternative ways of expressing the inter{link spatial force

f using either the conventional or the dual articulated body inertia quantities. Combining these

alternative expressions provides a direct method for computing the spatial accelerations of the links

as described in the following lemma.

Lemma 3.2 The spatial acceleration �(k) of the kth link is given by:

�(k) = �[P (k) + S(k)]�1[zp(k) + zs(k)� P (k)ap(k)]

�+(k) = �[P+(k) + S+(k)]�1[z+p (k) + z+s (k) � S
+(k)as(k)] (25)

Proof: Combine together (20) and (24), and eliminate f .

This result implies that the link accelerations � and �+ can be obtained by combining together the

results from the regular and dual articulated body inertia and residual force recursions. The hinge

generalized acceleration is given by the following pair of expressions:

_�(k) = �p(k) �G
�
p(k)�

+(k) = �s(k)�G
�
s(k)�(k) (26)

3.3 Physical Interpretation

We now discuss the physical interpretation of (25). If we examine the (regular and dual) articulated

body inertia forward dynamics algorithms, we see that a key part of the algorithms is the computa-

tion of the link articulated body inertias, culminating with the computation of the articulated body
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inertia for the base body. Once this inertia is obtained, the hinge acceleration for the base{body is

computed, followed by the rest of the link and hinge accelerations.

As shown in Figure 4, let us now consider the intermediate link k as the base{body for the

manipulator. For this choice, the components of the spatial velocity vector V (k) for the kth body

Base
body

6 dof hinge

Inertial reference

n

1

k

Figure 4: A serial free-ying manipulator with an intermediate link

as base{body

provide six of the generalized velocity coordinates for the system. The manipulator now has a tree

topology con�guration, with two branches starting at the base. The extension of the articulated

body inertia forward dynamics algorithm for such a tree topology con�guration has been described

in [11]. The basic algorithm remains the same as for a serial chain except that the recursions

now have a scatter/gather structure. All recursions towards the base \gather" all the inputs from

the incoming branches, while those proceeding outwards scatter their outputs along the outgoing

branches. Thus the articulated body inertia algorithm now involves two separate articulated body

inertia recursions starting o� at link 1 and link n respectively and proceeding independently towards

link k. The �rst recursion, from link 1 to link k, is identical to the recursion in Algorithm 2.2 for

computing P (:)'s for the regular model. On the other hand, the second recursion from link n to

link k is identical to the recursion in Algorithm 3.1 for computing S(:)'s for the dual model. These

recursions come to a stop when the kth link is reached.

The results from the two recursions are \gathered" together at the kth link to form the

quantity P (k) + S(k) which is precisely the articulated body inertia of the whole manipulator as

seen at frame Ok with the k
th link regarded as the base{body. Similarly zp(k)+zs(k) is the residual

force at frame Ok with the kth link being the base{body. The corresponding relationships in (25)

for the \+" quantities have a similar interpretation but with frame O+
k serving as the reference

frame for the kth link. Thus according to (25), we can compute the spatial accelerations for the kth
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link by �rst making it the base{body, computing its articulated body inertia and residual forces

and then using Lemma 3.2 to obtain its spatial acceleration. This observation forms the basis for

the base-invariant forward dynamics algorithm described in the next section.

3.4 The Base{Invariant Forward Dynamics Algorithm

The previous section discussed how each link in the manipulator can in principle be regarded

as a base{body. This arbitrariness in the choice of the base{body reects the inherent base-

invariance symmetry of free-ying manipulators. However, the articulated body inertia forward

dynamics algorithms discussed earlier requires the designation of a speci�c link as the base{body

for the manipulator, and this speci�c choice breaks the symmetry. We show here that breaking the

symmetry is unnecessary and we reformulate the algorithm so as to preserve and take advantage

of the symmetry. The key to this is to simultaneously treat every link in the manipulator as a

base{body. With this in mind, and making use of Lemma 3.2, we propose the following new forward

dynamics algorithm:

Algorithm 3.3 Base{Invariant Forward Dynamics Algorithm

1. Use the �rst part of Algorithm 2.1 to compute the orientations, spatial velocities V (k), and

the Coriolis and gyroscopic terms a and b for all the links recursively.

2. (a) Compute the articulated body quantities P (:) etc. and the residual forces zp(:) in a recur-

sion from link 1 to link n using Algorithms 2.2 and 2.3. (b) Simultaneously compute the dual

articulated body quantities S+(:) etc. and the dual residual forces z+s (:) in a recursion from

link n to link 1 using Algorithms 3.1 and 3.2. The recursions in (a) and (b) can be carried

out independently.

3. For the kth link, compute the link spatial acceleration �(k) using Lemma 3.2, and the hinge

acceleration _� using (26). These computations can be carried out independently for each link.

4. For each link, integrate its hinge acceleration and velocity to update its hinge velocity and

angle. Return to step 1.

Step 4 above is necessary for numerical simulations and is used to propagate the state of the system

in time. It is important to bear in mind that some of the components of � contain non-integrable

coordinates, and these need to be converted (via kinematic transformations) into integrable quan-

tities prior to integration. In the next section we discuss further simpli�cation of the algorithm by

choosing a non{minimal set of generalized coordinates for the free-ying manipulator.

15



3.4.1 Simpli�cations Using Non{Minimal Coordinates

So far we have used the hinge angles together with the six base{body positional and orientation

coordinates as the generalized coordinates for the free-ying manipulator. These coordinates form

a minimal set since their dimension is the same as the number of degrees of freedom for the

system. We now look at an alternative and non{minimal choice of coordinates which simpli�es the

computations in Algorithm 3.3.

Recall that in Algorithm 3.3, the very �rst step in the dynamics computations involves a

recursion to compute the orientations and spatial velocities of all the links using the generalized

coordinates � and the generalized velocities �. Step 3 computes the hinge accelerations from the

link spatial accelerations and the last step updates the manipulator hinge coordinates and velocities

using an integration routine. These steps perform transformations between the hinge coordinates

and the spatial coordinates and can in fact be entirely dispensed with.

Towards this goal, we treat each link as an independent rigid body system in its own right.

For each link, we choose its orientation and positional coordinates as its generalized coordinates,

and its spatial velocity vector as its 6{dimensional generalized velocity coordinates. Taken to-

gether, this gives us a system with 6n generalized velocity coordinates. These coordinates are

clearly non{minimal since only N of them are truly independent. However, with these coordinates,

transformations between the hinge and spatial coordinate domains are unnecessary. The modi�ed

decoupled dynamics algorithm is as follows:

Algorithm 3.4 Decoupled Forward Dynamics Algorithm with Non-Minimal Coordinates

1. Use each links' generalized velocities (i.e. spatial velocity V (k)) to compute the Coriolis and

gyroscopic terms a and b for the link. These can be computed completely independently for

each link.

2. (a) Compute the articulated body quantities P (:) etc. and the residual forces zp(:) in a recur-

sion from link 1 to link n using Algorithms 2.2 and 2.3. (b) Simultaneously compute the dual

articulated body quantities S+(:) etc. and the dual residual forces zs(:) in a recursion from

link n to link 1 using Algorithms 3.1 and 3.2. The recursions in (a) and (b) can be carried

out independently.

3. For the kth link, compute the link spatial acceleration �(k) using Lemma 3.2.

4. For each link, integrate its spatial acceleration �(k) and spatial velocity V (k) to update its

spatial velocity, position and orientation. Go back to step 1.
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The use of these non{minimal coordinates eliminates the need for the minimal � and � coordi-

nates and hence dispenses with the kinematics computations in Algorithm 3.3 for obtaining the

link spatial velocities and orientations. The price paid with the use of redundant coordinates is

that the integration method now involves a di�erential{algebraic equation rather than an ordinary

di�erential equation. The remarks following Algorithm 3.3 about the integration of non-integrable

coordinates apply here as well.

3.4.2 Computational Issues

As is the case for the articulated body forward dynamics algorithm (Algorithm 2.3), the decoupled

dynamics algorithm described in Algorithm 3.4 is also of O(N ) complexity. However, since the

latter involves a pair of articulated body recursions, it is computationally more expensive. On the

other hand, since many of the computations are decoupled and independent of each other, it is

useful for parallel implementation. In Algorithm 3.4, the computations in step 1 can be carried

out independently and in parallel for all the links. In step 2, the articulated body recursion in

one direction is completely independent of the one in the opposite direction. Thus they can be

computed in parallel. Using an architecture in which each link is assigned its own computational

node, each link (node) receives the results of the articulated body recursions from its neighbors,

updates its own articulated body inertias, and passes the results onto its neighbors. As in step 1,

the computations in step 3 are independent from link to link. Thus each link computes its own

spatial acceleration independent of the other nodes. Each node even has its own local integrator

to update the state of its link.

3.4.3 Smoothing Interpretation of the Algorithm

As has been discussed in references [12, 13], the O(N ) articulated body inertia forward dynamics

algorithm in Section 2.2 resembles �xed{interval optimal smoothing algorithms from optimal es-

timation theory. The underlying estimation problem consists of the computation of the optimal

smoothed estimates of the states of a discrete time system driven by white noise over a �nite inter-

val. The smoothing algorithm contains a causal Kalman �lter to obtain optimal �ltered estimates

of the state process. Once the �ltered estimates are obtained, an anti{causal smoothing recursion

is used to compute the smoothed estimates. These causal and anti{causal recursions are similar

to the tip{to{base and base{to{tip recursions in the articulated body inertia forward dynamics

algorithm.

An alternative formulation of the smoothing algorithm is possible when all the observations
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over the �nite interval are available. It consists of running two independent Kalman �lters {

one causal and the other anti{causal { to generate two sets of �ltered estimates of the system

state [14, 15]. While one of the �ltered estimates is based upon all the \past" observations, the

other one is based upon all the \future" observations. The optimal smoothed estimate has been

shown to consist of a simple linear combination of the causal and anti{causal �ltered estimates.

The structure of this decoupled smoothing algorithm closely resembles the structure of the base-

invariant dynamics algorithm described in Algorithms 3.3 and 3.4.

3.5 Extensions to Tree{Topology Manipulators

The extension of the conventional articulated body inertia forward dynamics algorithm in Algorithm

2.3 to tree{topology systems has been described in reference [11]. The recursive computations take

on a gather/scatter structure. Recursions proceeding from the tips towards the base gather and

sum the outputs from the incoming branches as the recursion progresses. On the other hand, the

recursions that start from the base and proceed towards the tips scatter their outputs along each of

the outgoing branches. Apart from this di�erence, the algorithm when extended to tree{topology

systems retains the same sequential recursion steps as for serial{chain systems.

As in the case of serial{chain free-ying manipulators, tree{topology free-ying manipula-

tors also possess the base-invariance symmetry arising from the non{unique choice for the base{

body. The structure of the decoupled dynamics algorithm for tree{topology free-ying manipulators

is illustrated in Figure 5 and takes into account the fact there are more than two extremal bodies.

The overall structure of the decoupled dynamics algorithm remains the same as in Algorithm 3.4.

Corresponding to each extremal body, there is a fundamental model in which the extremal body

is treated as the base-body for the model. Articulated body inertia computations are required for

each of these fundamental models. At a link with multiple branches, every branch collects the ar-

ticulated body inertia outputs from all of the other branches at the link. This data is accumulated

by each branch to allow its articulated body inertia procedure to proceed. The overlap in the com-

putations among the articulated body inertia recursions for the fundamental models is such that

there are precisely two recursions proceeding in opposite directions across any serial link segment

of the manipulator. Lemma 3.2 is still valid and is used to compute the spatial accelerations of

each of the links.
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Figure 5: The structure of the decoupled dynamics algorithm for

tree topology free-ying manipulators

4 Base{Invariant Operational Space Inertia

We now look at the role of the operational space inertia [16, 17] in the dynamics of free-ying

manipulators. The operational space inertia inertia �(1) 2 R6�6 , has traditionally been de�ned as

the e�ective mass matrix of the whole manipulator as seen at the end{e�ector. The expression for

its inverse is given by

��1(1) = Jp(1)M
�1
p J�p (1) (27)

where Jp(1) 2 R6�N denotes the Jacobian to the link 1 spatial velocity and is given by

Jp(1) = B�(1)��H�; where B(1)
4
= col

n
I6�(i; 1)

on
i=1

2 R6n�6

with �(:; :) denoting the Kronecker delta function.

(28)

We generalize the notion of the operational space inertia so that it can be de�ned for all links on

the manipulator. Thus the operational space inertia for the kth link, �(k), is the e�ective mass

matrix of the manipulator as seen at frame Ok. Analogous to the earlier de�nition in (27), the

inverse of �p(k) is given by the expression

��1p (k) = Jp(k)M
�1
p J�p (k) (29)
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where Jp(k) 2 R
6�N denotes the Jacobian to the kth link spatial velocity and is given by

Jp(k) = B�(k)��H�; where B(k)
4
= col

n
I6�(i; k)

on
i=1

2 R6n�6 (30)

We now make use of the following operator identity which has been established in reference [7]:

��pH
�
pM

�1
p Hp�p =  

�
pH

�
pD

�1
p Hp p

4
= 
p 2 R

6n�6n (31)

It follows from this identity that

��1p (k)
29
= Jp(k)M

�1
p J�p (k)

30;31
= B�(k)
pB(k) (32)

The subscript p above is a reminder that the above expressions assume that the base{body is link

n. However, it is easy to show that even though Jp(k) andMp depend on the choice of base{body,


p is in fact independent of this choice. To see this, let us use the subscript k to denote the use of

the kth link as the base{body. It follows from Lemma A.1 in Appendix A that

��kH
�
k

41
= ��pH

�
pT n;k; and Mk

44
= T �n;kMpT n;k

Therefore,


k
4
= ��kH

�
kM

�1
k Hk�k

= ��pH
�
pT n;k[T

�
n;kMpT n;k]

�1T �n;kHp�p

= ��pH
�
pM

�1
p Hp�p

31
= 
p

Since 
p = 
k for all k, this quantity is independent of the choice of the base body and we drop

the subscript from 
 altogether. This fact, taken together with (29) also establishes the invariance

of the operational space inertia �(k) with respect to the choice of the base{body.

It has been shown in references [7, 17] that a block diagonal operator � 2 R
6n�6n, can be

used to decompose 
 as follows:


 = �+ �p�+� p (33)

The block diagonal components of � are denoted �(k) 2 R
6�6 , and are de�ned by the following

link n to link 1 recursion:8>>>>><
>>>>>:

�+(n) = 0

for k = n � � � 1

�(k) = � �p(k)�
+(k)� p(k) +H

�
p (k)D

�1
p (k)Hp(k)

�+(k � 1) = ��(k; k � 1)�(k)�(k; k � 1)

end loop

(34)
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On the face of it, it appears from (34) that we should be using the subscript p on � and its

components to indicate their dependence on the choice of link n as the base{body. However, this is

unnecessary because � is in fact independent of the choice of the base{body. This fact is obvious

once we realize that the three terms on the right hand side of (33) are block diagonal, block strictly

upper{triangular and block strictly lower-triangular respectively. Since 
 is independent of the

choice of base{body, therefore so also is � and its components. From the de�nition in (32) and the

decomposition in (33), it follows that

��1(k)
32;33
= B�(k)[�+ �p�+� p]B(k) = B�(k)�B(k) = �(k) (35)

That is, �(k) is the inverse of the operational space inertia �(k). For ground{based manipulators,

�(k) is singular for the �rst 5 links connected to the base. The singularity reects the fact that

there are directions along which spatial forces induce no motion in the manipulator. In contrast,

at the base{body (link n) of a free-ying manipulator

�(n)
34
= P�1(n)

Thus, for free-ying manipulators, �(n) is always invertible. Indeed, it can be shown that �(k) is

invertible for all k. The invertibility property reects the fact that any spatial force at any point

on the free-ying manipulator will cause a non{zero acceleration of the free{ying manipulator.

Even though we have seen that the values of the �(:)'s do not depend of the choice of a

base{body, the computational scheme in (34) certainly does, since it makes use of the articulated

body inertia quantities computed with link n as the base. Using link 1 as the base body, we obtain

the following dual algorithm for computing �(k) which makes use of the dual articulated body

inertia quantities computed in Algorithm 3.1:8>>>>><
>>>>>:

�(0) = 0

for k = 0 � � �n� 1

�+(k) = � �s(k)�(k)� s(k) +H
�(k)D�1

s (k)H(k)

�(k + 1) = ��(k; k + 1)�+(k)�(k; k + 1)

end loop

(36)

Both (34) and (36) describe computational schemes consisting of one recursion to compute the

articulated body inertia quantities, followed by a recursion in the opposite direction to compute

the �(k)'s. The lemma below shows that the symmetry of free-ying manipulators in fact allows

us to dispense with these algorithms and express the �(k)'s directly using the articulated body

inertia P (k) and its dual S+(k).

Lemma 4.1

[�(k)]�1 = P (k) + S(k) (37a)

[�+(k)]�1 = P+(k) + S+(k) (37b)
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Proof: It follows from (6), (16) and (34) that (37a) is true for k = i if and only if (37b) is true

for k = i� 1. We have that ��1(n) = P (n). Since by de�nition S(n) = 0, this implies that (37a)

holds for k = n. Thus (37b) holds for k = n�1. We use proof by induction to establish the general

result.

Assume that (37b) holds for a certain k. Then from (6), (34) and that S(k)H�(k) = 0, it

follows that

[P (k) + S(k)]�(k)
34
= [P (k) + S(k)][� �p(k)�

+(k)� p(k) +H
�
p (k)D

�1
p (k)Hp(k)]

6
= P+(k)�+(k)� �p(k) + � p(k) + S(k)�

�
p(k)�

+(k)� p(k)

= P+(k)�+(k)� p(k) + � p(k) + S(k)�
+(k)� p(k)

= I6 � � s(k)S
+(k)�+(k)� p(k)

= I6 � � s(k)[I6 �P
+(k)�+(k)]� p(k)

= I6 � � s(k)� p(k)[I6 � P
+(k)�+(k)� p(k)]

= I6

The last step follows from the fact that

� s(k)� (k) = � s(k) �Gs(k)H(k)Gp(k)H(k) = � s(k)�Gs(k)H(k) = 0

Thus if (37b) is true for a certain k, (37a) is also true for the same k. When combined with the

earlier result, it implies that (37a) is also true for k � 1. This establishes the induction process

since we have seen that (37a) is in fact true for k = n.

This result once again highlights the natural base-invariance symmetry of free-ying manipulators.

The positive de�niteness of P (:) and S+(:) taken together with the above result clearly implies

that �(:) and �+(:) are also positive de�nite (and hence invertible). Also, the operational space

inertia �(k) is given by

�(k)
35;37a
= P (k) + S(k) (38)

Lemma 4.1 provides us with a new method to compute the operational space inertias for

the links on the free-ying manipulator. The algorithm is as follows:

Algorithm 4.1 Decoupled Computation of Operational Space Inertias
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1. (a) Compute the articulated body quantities P (:) recursively from link 1 to link n using Algo-

rithm 2.2. (b) Simultaneously compute the dual articulated body quantities S+(:) recursively

from link n to link 1 using Algorithm 3.1.

2. Compute �(k) = [P (k) + S(k)] for the kth link. These computations can be carried out

independently for each link.

Unlike the algorithms in (34) and (36), Algorithm 4.1 has a decoupled structure arising from the

symmetry of the free-ying manipulators. The two sequential recursions in the earlier algorithms

are now replaced by a pair of parallel recursions. This can be used to advantage in a parallel

computing environment.

As is the case for serial chain manipulators, the operational space inertia at any link of a

tree{topology free-ying manipulator is simply obtained by summing up the P and S articulated

body inertias at the link.

5 Conclusions

Space manipulators possess a base-invariance symmetry not encountered in terrestrial manipulators.

The symmetry arises from the freedom available in the choice of a base{body for the manipulator.

We use this symmetry to develop a new O(N ) forward dynamics algorithm with a highly decou-

pled structure. A key idea is to treat \every link" as a base body. It is shown that key dynamical

quantities can be obtained by combining results from independent articulated body inertia com-

putations. Also discussed are the use of non{minimal coordinates to further decouple the forward

dynamics algorithm and the extension of the base-invariant algorithm to tree{topology free-ying

manipulators. In addition, it has also shown that the algorithm for computing the operational

space inertia inertia for the manipulator can be simpli�ed using the decoupled articulated body

inertia recursions.
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A Mass Matrix Factorization with Link k as the Base-Body

Section 2 de�ned expressions for the spatial operators such as H, � etc. and the mass matrix with

link n as the manipulator base-body. The Newton-Euler Factorization of the mass matrix M in

(4a) formed the basis for the derivation of the expression for the mass matrix inverse in (10c). In

this appendix we show that these expressions and results can be developed equally well when a

link other than link n serves as the base-body. As the �rst step, Lemma A.1 de�nes an invertible

transformation T k;n(:; :) which maps generalized coordinates for the link n base-body model into

the generalized velocity coordinates for the link k base-body model. Subsequently, Lemma A.2

gives new expressions for theH, � etc. spatial operators as well as the Newton-Euler Factorization

of the new mass matrix for the link k base-body model. These latter expressions are su�cient

to derive the new expressions for the mass matrix inverse in a manner identical to that for the

case with link n as the base-body. These conclusions are not surprising, and can be obtained from

physical arguments. However, for the sake of completeness, we include the mathematical details

and proofs here.

The spatial velocity of the base{body contributes six of the generalized velocity coordinates

for the manipulator. The generalized velocities vector � with link n as the base body consists of

f�(1); � � � ;�(n� 1); V (n)g where we have used the fact that

�(n) = V (n)
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In this section we will use the base{body index as a subscript to denote the choice of the base{body.

Thus � above will now be denoted �n.

When we switch the base{body from link n to another link, say link k, the six velocity

coordinates given by V (n) are replaced by the six coordinates V (k) consisting of the the spatial

velocity of link k so that the new coordinates �k 2 R
N are given by

�k

4
=

0
BBBB@

�(1)
...

�(n� 1)

V (k)

1
CCCCA (39)

Lemma A.1 below de�nes the nonlinear transformation T k;n(:; :) which provides the mapping be-

tween the �k and �n coordinates. First we rewrite Hn in the following partitioned form

Hn =

 
H 0

0 I6

!
; where H

4
= diag

n
H(i)

on�1
i=1

2 R(N�6)�6(n�1) (40)

Lemma A.1 The transformation map T k;n is such that

�k = T k;n�n; where T k;n =

 
In�1 0

XkH
� ��(n; k)

!
2 RN�N (41)

with

Xk

4
= [0; � � � ; I6;�

�(k + 1; k); � � � ;��(n� 1; k)] 2 R6�n�1 (42)

The inverse transformation T n;k such that �n = T n;k�k is given by

T n;k
4
= T �1k;n =

 
In�1 0

���(k; n)XkH
� ��(k; n)

!
2 RN�N (43)

Proof: From (3a) it follows that

V (k) =
nX

i=k

��(i; k)H�(i)�(i) = [XkH
�; ��(n; k)]�n

From this follows the expression for T k;n in (41). The expression for its inverse, T n;k, follows

quite simply from matrix manipulation.

The kinetic energy of the manipulator is given by

1

2
��nMn�n =

1

2
��kT

�
n;kMnT n;k�k
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therefore, the mass matrixMk for the �k set of velocity coordinates is given by

Mk = T
�
n;kMnT n;k = T

�
n;kHn�nMn�

�
nH

�
nT n;k (44)

We now show that the operator formalism developed with link n as the base{body { in-

cluding the results related to the operator factorization and inversion of the mass matrix in Lemma

2.1 { also hold when link k is chosen as the base body. If we look closely at the derivation of the

factorization and inversion results for the mass matrix and the articulated body inertia forward

dynamics algorithm, we see that the key properties in the derivation were that the mass matrix

has a Newton{Euler operator factorization as in (4a), that H�
n and Mn are diagonal, and �n has

the form

�n = [I � E�n]
�1

where E�n is a nilpotent matrix. The factorization of the new mass matrix in (44) does not

quite have the form of the desired Newton-Euler operator factorization due to the presence of the

T n;k terms. We show in Lemma A.2 below that a similar Newton{Euler operator factorization of

the new mass matrix is also possible, and one from which the remaining operator results follow.

However, to do this we need to de�ne a new velocity coordinates vector �o
k obtained by reordering

the components of �k as follows:

�o
k = P�k =

0
BBBBBBBBBBB@

�(1)
...

�(k � 1)

V (k)

�(k)
...

�(n� 1)

1
CCCCCCCCCCCA
; where P

4
=

0
B@
I(k�1) 0

0

 
0 I6

I6(n�k�1) 0

! 1
CA (45)

Note that P is simply a permutation matrix which reorders the coordinate elements within �k.

Moreover, P�1 = P�. In the �o
k coordinates, the mass matrixMo

k is given by

Mo
k = PMkP

� 44
= PT �n;kMnT n;kP

� = PT �n;kHn�nMn�
�
nH

�
nT n;kP

� (46)

Lemma A.2 The mass matrix Mo
k has the following Newton-Euler operator factorization:

Mo
k =Hk�kMk�

�
kH

�
k (47)

where

Hk
4
= PHP�; �k

4
= [I � E�k]

�1; Mk
4
= ��Mn��

� (48)

��
4
=

0
@ I6k 0

0 diag
n
�(i� 1; i)

on
i=k+1

1
A 2 R6n�6n; E�k

4
=

 
Y1 Y3
0 Y2

!
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E�k is nilpotent with Y1 2 R
6k�6k, Y2 2 R

6(n�k)�6(n�k) and Y3 2 R
6k�6(n�k) de�ned as

Y1
4
=

0
BBBBBB@

0 0 0 0 0

�(2; 1) 0 : : : 0 0

0 �(3; 2) : : : 0 0
...

...
. . .

...
...

0 0 : : : �(k; k � 1) 0

1
CCCCCCA

Y2
4
=

0
BBBBBBBBB@

0 �(k; k + 1) 0 � � � 0 0

0 0 �(k + 1; k + 2) : : : 0 0

0 0 0 : : : 0 0
...

...
. . .

...
...

...
...

. . .
... �(n� 2; n� 1)

0 0 0 : : : 0 0

1
CCCCCCCCCA

and

Y3
4
=

0
BBBB@

0 0 0 0 0

0 0 : : : 0 0
...

...
. . .

...
...

I6 0 : : : 0 0

1
CCCCA

Proof: We have

H�T n;k
43
=

 
H� 0

���(k; n)XkH
� ��(k; n)

!

= QH�; where Q
4
=

 
I6(n�1) 0

���(k; n)Xk ��(k; n)

!
2 R6n�6n (49)

Let

ek
4
=

�
col
n
I6�(i; k)

on�1
i=1

��
= [0; � � � ; I6; � � � ;0]; and Î

4
= [I6(n�1);0]

where �(:; :) denotes the Kronecker delta function. We have that

[Xk; �
�(n; k)] = ek�

�
n (50)

Therefore,

Q�1 =

 
I6(n�1) 0

Xk ��(n; k)

!
=

 
Î

ek�
�
n

!
(51)

��nQ =
h
Q�1���n

i�1 51
=

 
Î���n
ek

!�1
=

 
Î � ÎE�

�
n

ek

!�1
(52)
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At the component level,

 
Î � ÎE�

�
n

ek

!
=

0
BBBBBB@

I6 ���(2; 1) 0 0 � � � 0 � � � 0 0

0 I6 ���(3; 2) 0 � � � 0 � � � 0 0
...

...
...

...
...

...
...

...
...

0 0 0 0 � � � 0 � � � I ���(n; n� 1)

0 0 0 0 � � � I6 � � � 0 0

1
CCCCCCA

The above matrix is identical in form to (I � E��n) except for the last row. Straightforward matrix

manipulation shows that

P

 
Î � ÎE�

�
n

ek

!
��

� = [I � E�
�

k
] (53)

In the above, the permutation matrix P transforms

 
Î � ÎE�

�
n

ek

!
into a tri{diagonal matrix form,

while ��
� normalizes the terms along the diagonal to I6. It is easy to verify that E�k is nilpotent,

and hence (I � E�k) is invertible. We denote this inverse by �k. Thus

 
Î � ÎE�

�

ek

!�1
53
= ��

��kP (54)

Therefore we have that

��H�T n;kP
� 49

= ��QH�P�
52;54
= ��

���kPH
�P� = ��

���kH
�
k (55)

Thus

Mo
k = PT

�
n;kH�M��H�T n;kP

� =Hk�kMk�
�
kH

�
k

This establishes the result.

Note that while�k is no longer fully lower triangular, it is nevertheless block{wise triangular.

The new indexing scheme is more natural in that the sequence of coordinates now follows the

natural ordering of the hinges along the manipulator. Since we now see thatMo
k has the necessary

Newton{Euler operator factorization, the operator inversion results corresponding to Lemma 2.1

can be obtained here as well. Indeed, it can be shown that

fMo
kg
�1 = [I �Hk kKk]

�D�1
k [I �Hk kKk] (56)
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